
Using Ancillary Information from Radar-Based Observations and
Rain Gauges to Identify Error and Bias

BRIAN R. NELSON,a OLIVIER P. PRAT,b AND RONALD D. LEEPER
b

aNOAA/NESDIS/National Centers for Environmental Information, Asheville, North Carolina
bNorth Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

(Manuscript received 31 July 2020, in final form 11 February 2021)

ABSTRACT: Ancillary information that exists within rain gauge and radar-based datasets provides opportunities to better

identify error and bias between the two observing platforms as compared to error and bias statistics without ancillary

information. These variables include precipitation type identification, air temperature, and radar quality. There are two

NEXRAD-based datasets used for reference: the National Centers for Environmental Prediction (NCEP) Stage IV and the

NOAANEXRADReanalysis (NNR) gridded datasets. TheNCEPStage IV dataset is available at 4 kmhourly and includes

radar–gauge bias adjusted precipitation estimates. The NNR dataset is available at 1 km at 5-min and hourly time intervals

and includes several different variables such as reflectivity, radar-only estimates, precipitation flag, radar quality indicator,

and radar–gauge bias adjusted precipitation estimates. The NNR data product provides additional information to apply

quality control such as identification of precipitation type, identification of storm type and Z–R relation. Other measures of

quality control are a part of the NNR data product development. In addition, some of the variables are available at 5-min

scale. We compare the radar-based estimates with the rain gauge observations from the U.S. Climate Reference Network

(USCRN). The USCRN network is available at the 5-min scale and includes observations of air temperature, wind, and soil

moisture, among others. We present statistical comparisons of rain gauge observations with radar-based estimates by

segmenting information based on precipitation type, air temperature, and radar quality indicator.
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1. Introduction

The accepted procedure to measure the quality of radar

rainfall estimates has typically been to compare rain gauge data

with radar-based rainfall estimates using the rain gauge as the

de facto observation. Historical process has dictated that the

rain gauge estimate is considered truth, and common practice

has been to compare the gridded (Cartesian or polar) radar

rainfall product (reflectivity, rainfall, etc.) with the point

measurement at the corresponding temporal scale. Some ex-

amples of this process can be seen in Smith et al. (1996), Young

et al. (1999), and Nelson et al. (2016). These methods provide a

quantitative process to identify errors in the radar-based

product. Caveats in these methods are provided in the studies,

and potential problems mostly relating to point to pixel com-

parisons are outlined in studies such as Kitchen and Blackall

(1992), Ciach andKrajewski (1999), andHabib et al. (2004). The

caveats have to do with subgrid variability of the rainfall process

at various temporal scales and the fact that comparing a point

estimate to an area estimate introduces errors. Kirstetter et al.

(2015) built a probabilistic model at fine scales to evaluate the

error in the rainfall estimates from the Multi-Radar Multi-

Sensor QPE system by precipitation type. They also used

the National Weather Service (NWS) Hydrometeorological

Automated Data System (HADS) in situ data for compari-

sons. Another study by Chen et al. (2013) compared the

National Mosaic Quantitative Precipitation Estimation (Q2)

product to the NCEP Stage IV project over the conterminous

United States (CONUS). Chen et al. (2013) present results by

season and location [i.e., River Forecast Center (RFC)] as

well as striating the error based on the radar quality indicator

by location. In this study we approach the method of de-

scribing errors using rain gauges as the reference, but we also

use variables that are available as ancillary information to try

and characterize the errors more completely. We attempt to

build on the previous studies by presenting information

using precipitation type, air temperature, and radar quality

indicator in comparisons with the U.S. Climate Reference

Network (USCRN). NOAA’s NEXRAD Reanalysis (NNR)

Climate Data Record has six variables at 1-km resolution;

hourly radar–gauge estimates, hourly radar-only estimates,

5-min radar rain rates, 5-min precipitation flags, 5-min re-

flectivity mosaic, and 5-min radar quality indicator (Nelson

2017). In this study we also have available to us the USCRN

dataset, which includes the following variables: 5-min pre-

cipitation estimate, soil moisture, air temperature, wind

speed, and an hourly rain gauge estimate. The goal of this

study is to use the ancillary information to separate cases,

calculate errors for each case and characterize errors in a

different manner than what has typically been done. This

paper is organized as follows: section 2 provides an overview

of the methodology and data products, section 3 shows results,

and section 4 provides conclusions and recommendations.

2. Data and methodology

a. NOAA’s NEXRAD reanalysis climate data record

NOAA’s NEXRADReanalysis (NNR) Climate Data Record

(CDR) generates six variables related to quantitative precipitationCorresponding author: Brian R. Nelson, brian.nelson@noaa.gov
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estimation over a defined period (2002–11). All variables are

1-km spatial resolution. The variables are MOS2D, a two-

dimensional gridded reflectivity; PRATE, an uncorrected

precipitation rate; ROQPE, a radar-only quantitative precip-

itation estimate; GCQPE, a gauge corrected quantitative

precipitation estimate; PFLAG, a precipitation flag; and

RQIND, a radar quality indicator. ROQPE and GCQPE are

provided at hourly scale and MOS2D, PRATE, PFLAG,

and RQIND are provided at 5-min scale. For in-depth de-

tails about the products, see Nelson (2017).

Of particular interest in NNR are the hourly precipitation

estimates (gauge-corrected and radar-only) as well as the

precipitation flag and 5-min radar rain rates. Hourly radar–

gauge, radar-only estimates, and 5-min rain rates are generated

by the Multi-Radar Multi-Sensor algorithm (Zhang et al. 2016).

The precipitation flag provides information on the type of pre-

cipitation that is estimated (Zhang et al. 2016) such as snow, hail,

convective, stratiform, etc. as well as no rain cases. Table 1

provides the types of flags that are generated. In this work we

use all of the defined variables with the exception of the MOS2D.

A brief overview of each variable is given here.

1) ROQPE

Radar-only precipitation rates are obtained by applying Z–

R relationships to the mosaicked hybrid scan reflectivity field

pixel by pixel. Zhang et al. (2011) provide the overview of

precipitation rate generation.

2) GCQPE

Bias correction of radar-only QPEs is based on an additive

radar rainfall error model. The details can be found in Zhang

et al. (2011, 2014). Rain gauge observations used in this

blending procedure are mostly taken from HADS.

3) PRATE

The algorithm to generate precipitation rate is performed at

the 5-min scale using the mosaicked two-dimensional reflec-

tivity and the Z–R relation defined in ROQPE.

4) PFLAG

Multiple precipitation regimes often coexist within a single

radar site. An automated precipitation classification based on

the 3D radar reflectivity structure and atmospheric environ-

mental data is used. The classification of precipitation regimes

consists of a series of physically based heuristic rules (see

Zhang et al. 2011; Grams et al. 2014; Xu et al. 2008; Qi et al.

2013). Each grid point is assigned a precipitation type based on

TABLE 1. Precipitation type identifiers from NOAA’s NEXRAD

reanalysis.

Value Precipitation type

21 Missing

0 Zero

1 Stratiform/warm stratiform

2 Bright band

3 Snow

4 Overshoot

6 Convective

7 Hail

9 Warm rain

10 Cool stratiform

91 Tropical convective

96 Tropical stratiform

FIG. 1. Location of USCRN sites. CONUS sites are used for comparison of the radar-based

products in this study.
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3D reflectivity structure and the environmental thermal and

moisture fields.

5) RQIND

The radar quality indicator is a dimensionless variable that

is a combined measure for beam blockage and vertical profile

of reflectivity effects. Zhang et al. (2012a) describe the equa-

tions for determining the RQIND with a range from zero [full

beam blockage and/or vertical profile of reflectivity (VPR)

effects] to 1 (no beam blockage or VPR effects).

b. U.S. Climate Reference Network

The USCRN is a systematic and sustained network of

climate monitoring stations with sites across the CONUS,

Alaska, and Hawaii. The primary purpose of the USCRN

network is to monitor air temperature, precipitation, and

soil moisture/soil temperature. In addition to these param-

eters, each station measures ground surface (IR) tempera-

ture, solar radiation, wind speed, relative humidity, wetness

from precipitation, and several values that monitor the op-

erating condition of the equipment. Some of the secondary

parameters contribute to improving the confidence in the

observational measurements, and provide insight into the re-

liability and performance of the primary sensors (Diamond

et al. 2013). Of the parameters measured by the USCRN net-

work we use information on precipitation and ground surface

temperature at 5-min and hourly intervals. The USCRN pre-

cipitation gauge is surrounded by a Small Double Fence

Intercomparison Reference (SDFIR) shield and has a heating

element in the gauge throat so this systemmeasures snow better

than standard Cooperative Observer Program (COOP) or

Automated SurfaceObserving System (ASOS) gauges. Figure 1

shows the location of theUSCRNstations used in this study. The

USCRN is used for comparison in this study because the ob-

servations are not used in the gauge corrected radar observa-

tions. A note about the comparisons is that the USCRN 5-min

precipitation requires an initial precipitation amount of 0.2mm

in any 5-min period, which can be problematic for comparisons

with radar observations. For example, it may take multiple

5-min periods to reach a 0.2-mm increment recorded in a single

5-min period, while the stratiform rain is falling at a steady but

lighter rate, making it seem like the radar is underestimating

precipitation rate when it is not. Therefore, we restricted com-

parison towhenever the rain gauge estimatewas at least 0.2mm.

c. NCEP Stage IV radar-based estimates

The NCEP Stage IV product, herein referred to as Stage IV,

is a near-real-time product that is generated at NCEP. It is based

on the NEXRADPrecipitation Processing System (PPS) (Fulton

1998) and the NWS RFC precipitation processing. Originally the

Stage IV product was intended for assimilation into atmospheric

forecast models to improve quantitative precipitation forecasts

(QPF) (Lin and Mitchell 2005). However, the product as it is

currently generated and archived has become quite popular for

various applications and we use it in this study as a comparison

and sanity check albeit at a coarser spatial resolution. The over-

viewof Stage IV is that Stage IVdata are themosaicked data from

the 12 RFCs in the CONUS (Alaska is not included in Stage IV).

And the RFC data are generated by the NWS PPS algorithm that

uses mosaicked NEXRAD radar data and operational rain gauge

data for bias adjustment. The rain gauge data used at each RFC

varies depending on the RFC. However, some of the main rain

gauge networks are the HADS, ASOS, and Remote Automatic

Weather Stations (RAWS) and Automatic Local Evaluation in

Real-Time (ALERT). An extensive assessment as well as a de-

scription of the processing system of the Stage IV dataset can be

found in Nelson et al. (2016). While the Stage IV data are avail-

able since 2002, we only use the concurrent data to the rain gauge

and NNR available data (2007–09).

d. Methodology

A comparison of radar rainfall estimates with rain gauges

should provide ameasure of their relative closeness and should

take into consideration the subjectivity of comparing a gridded

estimate with a point estimate (Kitchen and Blackall 1992).

There are several statistical measures that when combined can

tell the story of this closeness. However, including the infor-

mation such as temperature, type of precipitation and an in-

dication of radar quality, we can provide some additional

information on the characteristics of the relative closeness of

the estimates. While data are available for various temporal

ranges we compared data from 2007 to 2009 since this was the

period of overlapping data for all datasets.

1) FRACTIONAL STANDARD ERROR

The fractional standard error (FSE) provides a measure

of the error in a relative sense. The FSE is a normalized

FIG. 2. (a) The USCRN 5-min observations vs the unadjusted

NNR 5-min precipitation rate. (b) TheUSCRNhourly observation

vs the gauge correctedNNR hourly accumulation. (c) TheUSCRN

hourly observation vs the Stage IV hourly accumulation.
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root-mean-square error that is normalized by the average

gauge value for the given condition. The normalization of

the root-mean-square error allows for a comparison of the

error across scales and conditions. The FSE provides a

measure of the error for various conditions of rain rate de-

fined from the rain gauge measurement Gn and the radar-

based observation Rn:

FSE5
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2) CORRELATION

Correlation is defined as a measure of interdependence of

variable quantities. In most radar rainfall studies the sample

Pearson correlation coefficient is used as themetric to illustrate

this interdependence (Habib et al. 2001).

3) BIAS

Bias in terms of comparison of radar estimates with gauge

estimates can be simply defined as the long-term ratio of the

rain gauge measurement Gn as compared to the radar-based

observation Rn. In this study we use a multiplicative bias de-

fined as

FIG. 3. Scatterplots of the hourly rain gauge estimate (x axis) vs the hourly radar based estimate (y axis) for

the gauge-corrected radar, radar only, and Stage IV radar: (a) for precipitation flags identified as stratiform,

(b) for precipitation flags identified as snow, (c) for precipitation flags identified as convective, (d) for pre-

cipitation flags identified as cool stratiform, (e) tropical stratiform, and (f) for precipitation flags identified as

tropical convective.
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The rain gauge measurement Gn is assumed the reference,

hence its summation is in the denominator (a bias value of 1.0

being unbiased).

3. Results

a. Radar gauge comparison

Radar rainfall observations from NOAA’s NEXRAD

Reanalysis are derived in the manner given by Zhang et al.

(2016). The method lays out the process for deriving a pre-

cipitation estimate given the input information such as the

modeled atmospheric temperature, the flagging process to

identify precipitation type, and aZ–R relationship as defined in

Zhang et al. (2016). The process of gauge correction via local

gauge bias-correction is also defined in Zhang et al. (2016).

Initially we look at comparisons of the radar rainfall rain

rates (PRATE) at the 5-min scale. In this study we convert the

5-min rain rate that is provided in millimeters per hour (m h21)

to a 5-min accumulation inmillimeters (mm) for comparison to

the 5-min rain gauge estimate. Figure 2a shows this comparison

at the 5-min scale. The 5-min radar observations are not cor-

rected with in situ measurements and thus show large bias as

compared to the rain gauge measurements. Figure 2b shows

the comparisons of the hourly rain gauge measurements with

the gauge corrected radar-based observations, and Fig. 2c

shows the improvement in the gauge corrected radar-based

observations as compared to the Stage IV radar-based esti-

mates. What is noticeable is the improvement from the 5-min

scale. Five-minute comparisons of rain gauge data with radar

rainfall estimates are often problematic (Habib et al. 2001). In

addition, at the hourly scale the improvement from the gauge

corrected observations (GCQPE) as compared to the Stage IV

is evident due the improved estimation algorithm such as

better Z–R relations, identification and removal of anomalous

propagation, and brightband identification.

b. Effect of precipitation type

Themethod for deriving precipitation observations provides

for the identification of precipitation type given information on

surface temperature, wet bulb temperature, expected hail, and

the composite reflectivity (see Zhang et al. 2016). The resulting

precipitation types are no precipitation, snow, hail, warm

stratiform, cool stratiform, convective, tropical stratiform, and

tropical convective. In this study we provide statistical analysis

FIG. 4. (top) The fractional standard error, (middle) the correlation, and (bottom) the bias

for each type of precipitation for the four different rain gauge–radar comparisons (5-min

gauge–precipitation rate, hourly gauge–radar only, hourly gauge–gauge-corrected radar, and

hourly gauge–Stage IV).
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as described in section 2 for FSE, correlation, and bias for rain

gauge versus radar-based observations (5-min, radar-only

hourly, gauge corrected hourly, and NWS Stage IV hourly)

for each type of precipitation as described above. Figure 3

shows the scatterplots for each of three radar-based observa-

tions (radar-only, gauge corrected, and Stage IV) categorized

by precipitation flag: stratiform (Fig. 3a), snow (Fig. 3b), con-

vective (Fig. 3c), cool stratiform (Fig. 3d), tropical stratiform

(Fig. 3e), and tropical convective (Fig. 3f). In Fig. 3 the largest

scatter is in the comparison of rain gauge and radar observa-

tions identified as snow and the least scatter is in the obser-

vations identified as tropical stratiform.

Figure 4a provides the comparisons for FSE for each type of

precipitation. The largest FSE is in the convective and stratiform

regime for the 5-min comparisons and then the least FSE is in the

same precipitation regime for the NNR hourly gauge corrected

precipitation. This provides some support for the gauge correc-

tion part of theNNRalgorithm (Zhang et al. 2014).Overall, there

is a low FSE for the gauge corrected precipitation comparisons

except in the snow regime. In fact, in the snow regime the FSE

increases for the gauge corrected comparisons (Cocks et al. 2016;

Martinaitis et al. 2015; Zhang et al. 2012b). Errors in the snow

regime can be due to timing of snow reports, stuck gauges, and the

inherent variability in the reflectivity to snow conversion factor.

And overall the FSE is lower in the gauge corrected precipitation

estimates as compared to the Stage IV estimates with the ex-

ception of snow and a small increase in the convective regime.

The smallest FSE are in the tropical stratiform and tropical

convective regimes for the gauge corrected comparisons.

These errors being smaller are likely due to the nature of the

rainfall regime being more widespread spatially and temporally.

Therefore, the radar(s) are better able to ‘‘see’’ the rainfall and

have a better representativeness of the storm/system.

Figure 4b provides the comparisons for correlation for each

type of precipitation. Of note is the low correlation in the 5-min

comparisons as expected and the low correlations in all com-

parisons for the snow regime despite the high-quality frozen

precipitation measurement by the USCRN stations. Also, the

correlations are largest in the gauge corrected comparisons

except in the snow regime and slightly lower in the convective

regime. There are large improvements in the correlation from

the radar-only estimates to the gauge corrected estimates

(except snow), and the correlation in the gauge corrected

comparisons are close to the Stage IV comparisons.

Figure 4c shows the bias results for each type of precipita-

tion. A bias of 1.0 shows that on average there is relatively no

over or underestimation. A bias over 1.0 suggests an overes-

timation of the radar-based observation and a bias under 1.0

suggests an underestimation of the radar-based observation.

For both the gauge corrected comparisons and the Stage IV

comparisons the bias is relatively low with the exception of the

snow regime for Stage IV (under estimation) and convective

for the gauge corrected (slight over estimation). The largest

biases are in the 5-min observations with large under estima-

tion in the stratiform labeled regimes and over estimation in

the snow, convective and hail regimes. An exception is the

large over estimation in the radar-only comparisons for hail.

This is expected as a 5-min reflectivity identified as hail will

then be converted to a large rainfall rate but then the gauge

correction (Vasiloff et al. 2009; Zhang et al. 2014) procedure

seems to do a good job of correction in the hail regime as the

bias is greatly reduced.

c. Effect of temperature

The USCRN network provides air temperature at 1.5m

above the ground as a variable for each observation.We parsed

FIG. 5. Temperature extracted from the USCRN database vs the type of precipitation flag.
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this temperature as a function of precipitation type. Figure 5

shows the ranges of temperature for each of the precipitation

types. The range of temperatures identified in the USCRN

observations are from 2408C to approximately 458C. And as

seen in the figure they generally agree with the precipitation

typing scheme. However, the ranges of temperatures appear to

be larger than expected in the stratiform precipitation, snow,

and cool stratiform regimes. For example, the stratiform type

range of temperatures is large from2108 to 4018C. This could
be due to an error in the precipitation flagging algorithm being

influenced at times by hydrometeor conditions above the sur-

face (i.e., at the radar scanning height) for these different re-

gimes. For the most part the identification of precipitation type

appears to match well with the related surface air temperature

variable from the USCRN location. This led us to segment the

statistics of FSE, correlation and bias based on the air tem-

perature itself. Figure 6a provides the FSE based on a range of

air temperature values. For the ranges of temperature greater

than 08C the 5-min comparisons are largest and the gauge

corrected comparisons are smallest. But for freezing tem-

peratures the 5-min comparisons have the smallest FSE,

which compares well with the error analysis based on snow

precipitation type.

Figure 6b provides the correlation based on the ranges of air

temperature values. The smallest correlation for all compari-

sons is for freezing temperatures. Correlations increase con-

siderably for the greater than zero ranges of air temperature

and the gauge corrected comparisons have slightly larger cor-

relation values versus the Stage IV comparisons. Likewise, in

Fig. 6c the presentation of bias shows a similar story to corre-

lations except that for temperatures greater than zero the

5-min comparisons show slightly better bias as compared to the

radar-only comparisons. Again, the gauge corrected compari-

sons show low or almost no bias as well as the Stage IV except

FIG. 6. (top) The fractional standard error, (middle) the correlation, and (bottom) the bias

for a range of air temperature for the four different rain gauge–radar comparisons (5-min

gauge–precipitation rate, hourly gauge–radar only, hourly gauge–gauge-corrected radar, and

hourly gauge–Stage IV).
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that for freezing temperatures the Stage IV shows a significant

underestimation.

d. Effect of radar quality

Radar quality index (RQI) is defined in Zhang et al. (2012a)

as a combined measure for beam blockage and VPR effects.

VPR effects have to dowith the variation of the reflectivity as it

is returned from the atmosphere. There is variation in the

vertical direction as well as with distance from that radar

(Vignal et al. 1999). Identification of this variation aids in

correcting the reflectivity that is used for precipitation esti-

mation (Kirstetter et al. 2010). The RQI ranges from 0 (more

blockage and VPR effects) to 1 (least blockage and VPR ef-

fects). In our study we segmented rain gauge measurements

and radar-based observations by RQI bins (0–0.2, 0.2–0.4, 0.4–

0.6, 0.6–0.8, and 0.8–1.0) and assessed the FSE, correlation, and

bias (Fig. 7). For all statistical measures the best performance is

at the 0.8–1.0 RQI bin. This is to be expected since the highest

value of RQI relates to the least blocked areas with the least

VPR effects. For FSE for each radar-based comparison the

trend is for reduced FSE for increasing RQI and the gauge

corrected comparisons show the smallest FSE with Stage IV

having the next smallest FSE. The story is similar for correla-

tion with increasing correlation for increasing RQI for all

comparisons of the radar-based observations and the gauge

corrected comparisons having the largest correlations. Finally,

the comparisons become more unbiased with increasing RQI.

However, for the gauge corrected comparisons there appears

to be a slight over estimation at the 0.4–0.6 and 0.6–0.8 RQI

bins. For RQI less than 0.6 the 5-min comparisons have less

bias than the radar-only comparisons. Overall the statistics of

the radar-based comparisons show improvement with in-

creased radar quality. This is likely due to the advanced quality

algorithms in the NNR that consider the effects of radar

FIG. 7. (top) The fractional standard error, (middle) the correlation, and (bottom) the bias

for radar quality indicator for the four different rain gauge–radar comparisons (5-min gauge–

precipitation rate, hourly gauge–radar only, hourly gauge–gauge-corrected radar, and hourly

gauge–Stage IV).
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artifacts (Lakshmanan et al. 2007a,b) as compared to the Stage

IV observations.

4. Conclusions

In this study we have compared rain gauge estimates from

the USCRN network for the period 2007–09 versus the NNR

for both the 5-min and hourly time scales.We used information

in the NNR dataset including the radar-only observation, a

precipitation flag, and the radar quality index, and information

from the USCRN such as surface air temperature to better

discern the factors governing the relationship of radar esti-

mates to gauge observations. In addition, we used the NCEP

Stage IV product that is provided at a coarser spatial resolution

as a separate comparison dataset and sanity check. A statistical

analysis of the gauge and radar comparisons provides several

important conclusions.

1) Five-minute comparisons of rain gauge estimates with radar

observations are still problematic due to factors including

subgrid variability, biased observations, and quality of

observations. In this discussion bias is considered over or

under estimation as referenced to an in situ observation.

Quality of observation is related to the quality control

measures applied to the observation or estimate.

2) The precipitation type can be an effective proxy for iden-

tification of the likely magnitude and sign of error and bias.

Large errors are evident in the radar-only precipitation

estimates for cool season type precipitation like stratiform

and snow. These errors are reduced for radar-only precip-

itation estimates in the tropical type precipitation regimes.

The gauge-corrected precipitation estimates (including the

NCEP Stage IV) have reduced errors as compared to the

radar-only precipitation estimates for all precipitation types

except for snow, which can indicate the need for an im-

proved snow identification algorithm and/or this can indi-

cate the difficulty of using gauges for correction due to the

nature of measuring snow with rain gauges (e.g., timing,

melting, quantity). Correlations are largest for the gauge

corrected precipitation estimates (including NCEP Stage

IV) as compared to the radar-only estimates as expected

due to the blending of the rain gauge observations. This is

the case across all precipitation regimes except snow. Biases

for the gauge corrected precipitation estimates are consis-

tently close to 1.0 (unbiased), which aremarkedly improved

from the radar-only estimates.

3) Temperature is an indicator for both precipitation type and

error and bias. In the temperature ranges of less than 08C
large errors are evident in the radar-based observations,

and in the type of precipitation indicated by radar. This

problem has always been difficult since precipitation in the

freezing regime provides a highly variable reflectivity esti-

mate based on the returned electromagnetic power from

the hydrometeor back to the radar.

4) Radar quality indicator is less of an indicator for error and

bias except for the values in the 0.8–1.0 bin value, which

show the best agreement of the radar-based observations

with the rain gauge estimates. Correlation and FSE both

improve for each increased bin of RQI. This is as expected

since an increasing RQI suggests a better precipitation es-

timate due to better radar coverage either vertically or

horizontally.

5) The bias correction procedure for blending radar and rain

gauges in the NNR performs relatively well as compared to

the NCEP Stage IV analysis.

6) The NNR is able to identify several types of precipitation

and assign different Z–R relations as compared to Z–R

relations (only four) assigned to the Stage IV observations.

This ability to identify different precipitation types is a

factor in reduced error and bias and improved correlation.

However there is still room for improvement in cool season

precipitation and snow/frozen precipitation regimes.

In conclusion, radar precipitation estimates have been

shown to be sensitive to precipitation type, surface air tem-

perature and the quality of the radar reflectivity estimates.

Some uncertainties are no doubt due to the quality of gauge

precipitation measurements, especially those at 5-min inter-

vals. This paper provides information on the error, correlation

and bias in the NNR radar-only and gauge-corrected precipi-

tation estimates as well as the operational NCEP Stage IV

precipitation estimates. These statistics can be valuable for

studies of precipitation given supporting information on the

meteorological conditions of the events. In addition, im-

provements in precipitation estimation algorithms could be

focused to certain aspects of the rainfall/frozen type precipi-

tation regimes.
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